
i 
 

ML-GAT: Multi Label Node Classification 
Using Enhanced Graph Attention Networks 

 
A PROJECT REPORT 

 
   SUBMITTED IN PARTIAL FULFILMENT OF THE 
REQUIREMENTS FOR THE AWARD OF THE DEGREE 

    OF 
 

BACHELORS OF TECHNOLOGY 
IN 

COMPUTER ENGINEERING 
  

Submitted By 
Ashi Gupta (Roll number: 2k16/CO/065) 
Prachi Garg (Roll number: 2k16/CO/220) 

 
Under the guidance of 

Dr. Rajni Jindal 
Head of department 

Department of Computer Science and Engineering 
 
 
 
 
 
 
 

DEPT. OF COMPUTER SCIENCE AND ENGINEERING 
DELHI TECHNOLOGICAL UNIVERSITY, DELHI 

MAY 2020 
 



iii 
 

ACKNOWLEDGEMENT 

 

We would like to express our sincere gratitude towards our mentor and research 
supervisor Dr. Rajni Jindal, Professor and Head, Department of Computer Science and 
Engineering, DTU. We are grateful for her key insights, invaluable suggestions and 
constant encouragement which was instrumental in infusing self-assurance and helped 
us turn our ideas into sound shape and form. Without her support and dedicated 
involvement in every step throughout the process, this thesis could not have been 
accomplished. 
 
We are grateful to the Department of Computer Science for giving us this research 
opportunity that has helped promote research at the undergraduate level. The crucial 
role of the staff of Computer & Software Engineering is also acknowledged with much 
appreciation, which helped us throughout the process of the development of this project 
by giving appropriate facilities and assistance. Lastly, we would like to thank our 
seniors and peers who helped us validate our ideas through important discussions that 
led to the successful completion of our thesis.   
 
Ashi Gupta  (2k16/CO/65) 
Prachi Garg (2k16/CO/220) 

    

 

 
 
 
 
 
 
 
 
 
 
 



iv 
 

 

ABSTRACT 

 

Real-world graphs are ubiquitous data structures forming the backbone of a plethora 
of application domains, systems and phenomena ranging from bioinformatics and 
protein interaction to 3D modelling and learning for vision tasks. Graph neural 
networks are a promising class of message passing based neural network models that 
learn rich representations on graph-structured data in its raw form capturing complex 
entity relationships from the graph topological structure. While node classification 
using state-of-the-art graph neural networks is an active research direction, multi-label 
node classification on graphs is a relatively unexplored area. Since many real-world 
graph based problems require the assignment of more than 1 label to each node instance 
in the graph, we study here multi-label node classification using enhanced graph neural 
networks. We propose a novel architecture, Multi Label Graph attention Network (ML-
GAT) that leverages the applicability of the attention based GAT to efficient inductive 
semi-supervised multi-label classification by augmenting complex inter-label and 
node-label dependencies implicit in the graph structure to the learning process. We 
compare our method with ML-GCN [2] and GAT [3] and GCN [1] baselines to 
examine the influence these losses have on the models and perform three empirical 
studies on the datasets to make a comparative analysis over the methods. After 
extensive optimization, we achieve significant performance increase on both the 
datasets from earlier benchmarks. We believe that this study will serve as a benchmark 
for future research in multi-label learning. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 
Social networks, recommender systems, 3D computer vision, molecular graph 
structures, telecommunication networks, and brain connectomes cannot be represented 
by a grid-like structure in a Euclidean domain. They are usually represented as 
arbitrarily structured graphs and fall under the category of non-Euclidean data. Prior 
to the advent of geometric deep learning and graph neural networks, there was no direct 
method to represent and capture graph topological information for training a model. It 
was done by using hand-engineered features representing structural information, which 
was time-consuming, costly and inflexible to dynamic learning, and adaptability to the 
learning process. Hence, it became necessary to have representation learning methods 
like deep learning that could directly work on graph-structured data.      

Geometric deep learning allows algorithms to analyse information in its native form 
without any loss of inter-node relationships by generalizing deep neural networks to 
work on non-Euclidean data in the form graphs and manifolds. Central to any GNN is 
the concept of message passing in the form of neighborhood aggregation techniques, 
which can be used to leverage deep neural networks to learn relational knowledge on 
interacting entities in a large number of real-world applications and systems.  

While most of the recent efforts in graph-based semi-supervised learning have been 
spent towards single-label classification, there are many real-world scenarios where 
each graph node could be simultaneously associated with multiple labels and complex 
label and node dependencies can be extracted from such data. These problems fall 
under the category of multi-label graph node classification.  

Datasets which are defined using multiple labels for each data point are called multi-
label datasets. Multi-label classification is the problem where each node instance can 
be assigned a subset of labels from the candidate label set. For example, in a social 
network, each user can belong to different social circles and in a collaboration network, 
each author could be working on multiple research domains.  

Despite the literature concerning multi-label classification on graph-structured 
datasets, learning multi-label classification using GNNs which can capture the 
important correlation information from the graph structure is a relatively unexplored 
area and has been covered by very few papers. The paper [2] was the first to introduce 
a GCN based semi-supervised method for multi-label classification known as ML-
GCN. It leverages a network made for single label classification (GCN) to learn 
efficient multi-label classification by incorporating inter-label and node-label co-
dependencies. This paper serves as inspiration for our architecture where we elevate 
the capabilities and functionalities of the Graph Attention Network (GAT) by 
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incorporating inter-label and node-label co-dependencies as done in their model ML-
GCN to achieve a node representation learning form which performs well for multi-
label node classification.  

Multi-label classification is a semi-supervised learning problem as real-world graphs 
can be partially-labelled and we might not have access to all actual labels for all the 
nodes in the graph. In order to make our model flexible to unseen nodes (or unseen 
graphs altogether) and have wider application, we want an inductive semi-supervised 
graph neural network based multi-label classification technique. This is where the idea 
of adapting the ML-GCN model for a GAT baseline stemmed from as the GAT is 
inherently structured for inductive learning tasks via the use of self-attention 
mechanisms. This observation is supported by its inductive learning experiments on 
PPI dataset for which it achieves high performance on two completely unseen test 
graphs.  

 1.1.1 Contribution of our work   

1. Firstly, we leverage graph attention networks for multi-label node classification 
and study the influence that the inclusion of label and node correlations has on 
the training process and learned models.  

2. Secondly, we compare the relative importance of inter-label and node-label 
correlation with respect to ML-GCN and ML-GAT models.  

3. Thirdly, we provide a comprehensive study that establishes state-of-the-art 
benchmarks for MLC using GNNs and standard datasets.   

4. In our thesis, we highlight the motivation for selection of this topic, its innate 
relevance and importance in AI research and give a comprehensive analysis of 
each relevant research work done previously so as to learn from them and 
observe best practices. We have essentially tried to study models from the 
standpoint of what could work in MLC and performed extensive 
experimentation to observe changes, patterns and properties.  

 

1.2 Preliminaries 

1.2.1 Euclidean vs non-Euclidean geometry  

Geometry is the realm of math which is constituted by elements like points, angles, 
lines, circles, squares, triangles and other shapes, as well as the mathematical 
properties and relationships between these elements.  

Euclidean Data 

The most commonly studied and known geometry is Euclidean geometry. Euclid was 
a 4th century Greek mathematician who invented Euclidean geometry by formalising 
and laying out the main principles of the field in his book ‘The Elements’. It is the first 
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to introduce axioms, theorems and proofs about squares, circles, acute angles, isosceles 
triangles, and other elements of Euclidean geometry. In the most basic terms, 
Euclidean geometry is the study of the geometry of flat surfaces. It is governed by three 
main properties that distinguish it from non-Euclidean geometry:  

● One of the fundamental properties of Euclidean geometry is the Parallel 
postulate. The parallel postulate states that given a line and a point, there is only 
one other line that you can draw though the point that will be parallel to the 
original line. This is what we study when we study geometry in schools and is 
definitely true on a flat, two-dimensional surface, but this concept turns out to 
be too trivial and doesn’t hold true in some other situations, including when the 
surface is curved. 

● In Euclidean geometry, the interior angles of triangles always add up to 180 
degrees  

● Shortest distance between 2 points is a straight line joining the two points.  

Hence, a Euclidean space can be defined as an n-dimensional space characterised by 
an infinite number of points, each point being represented by a coordinate in the n-
dimensional space and distance between any two coordinates given by the distance 
formula.  

Non-Euclidean Data 

In the real world, not everything lives in a two-dimensional flat space and hence, not 
everything is bound by the laws of Euclidean geometry. Consider a simple example, a 
non-inflated balloon is a flat object, and is governed by Euclidean geometry. But inflate 
the same balloon, its surface is no longer flat and it can’t be described by Euclidean 
geometry, and needs non-Euclidean geometry to define it mathematically. The most 
common non-Euclidean geometries are spherical geometry, elliptic geometry and 
hyperbolic geometry. The essential difference between Euclidean geometry and non-
Euclidean geometries is the nature of parallel lines: non-Euclidean geometry doesn’t 
follow the parallel postulate. Spherical geometry defines no such lines. In hyperbolic 
geometry at least two distinct lines that pass through the same point and are parallel to 
the given line.    

Limitations of Euclidean geometry and traditional modelling  approaches  

Geometry is pervasive and fundamental in most real world data, structures and 
applications and a clear understanding is required to represent the data in the 
appropriate geometry so it can be deployed in training machine learning models to 
further artificial intelligence as the backbone of systems and to extend its applicability 
to the most uncommon data structures.  

The core representational unit in the ML pipeline is the vector, and its 
multidimensional generalization, the tensor. In most machine learning and deep 
learning models, the natural choice for operable representation of data is to produce a 
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matrix or vector of real numbers. But in this process, we have already imposed a choice 
of Euclidean geometry which holds true for flat surfaces only.  

Consider the case of data structures having an inherent hierarchy or a tree like 
representation. Graphs and manifolds are ubiquitous and form the backbone of several 
real-world applications. These data types can’t be represented by Euclidean geometry 
and traditional models (deep learning models specially) that only work with Euclidean 
spaces seriously limit their applicability and feasibility when it comes to learning on 
such data structures. This is because the space the points live in is limiting, and if we 
lift these models to the non-Euclidean geometry, we can break through these limits and 
unlock the full potential of models. When non-Euclidean data is represented and 
modelled by models built for Euclidean data, the operations require a large 
dimensionality and are a lot more complicated while non-Euclidean spaces can 
potentially perform these operations in a much more simple, straightforward and 
flexible manner, with fewer dimensions. 

1.2.2 Inductive vs transductive learning 

 
To fully understand graph neural network learning it is important to introduce the 
concept of induction and transduction in machine learning.  
 
Inductive learning  
In inductive learning, you analyse a set of data and try to make a generalisation in the 
form of a model or function that is able to predict the correct or close to correct labels 
on completely unseen inputs from the same or similar domain. You basically “induce” 
rules, characteristics and patterns from the data to learn a model that will work on new 
inputs. The idea is to get a good generalisation from the training data with the aim that 
it will generalise well on unseen samples. The learning can be supervised, semi-
supervised or unsupervised. The output of the inductive learning process is in the form 
of a  function that maps inputs to outputs. The domain of the inputs for this model 
learnt is not limited to the instances in the training data (or corresponding test data) 
that was made available to us for learning the model. It is constructed to work on any 
kind input instances in the future.  
 
Transductive learning  
Literally speaking, transduction is the transfer of something from entity A to entity B. 
Consider the problem where we are given a set P of labelled examples (𝑥௜, 𝑦௜) where 
every 𝑥௜ is the input vector, and 𝑦௜ is the corresponding output label and a set P' of 
unlabelled instances 𝑥௜ᇱ. The target is to get the expected labels 𝑦௜

ᇱ.  for all instances in 
P’. In the inductive setting when we constructed a model that could label any future 
unseen inputs, we solved a problem that's more general than the one we needed to 
solve.  
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What transductive learning does is, it leverages the information contained in the 
training data P to make good, accurate predictions on the required unlabelled instances 
P’. It streamlines and focuses the process for a small set of target instances instead of 
trying to build a ‘general’ or universal model. Transduction, in the context of learning, 
refers to reasoning from specific observed training instances (like P), to specific 
observed (unlabelled) instances (like P’). It was introduced by Vladmir Vapnik, who 
explained it as: 
 
³When VolYing a SUoblem of inWeUeVW, do noW VolYe a moUe geneUal SUoblem aV an 
intermediate step. Try to get the answer that you really need but not a more general 
one.´  
 
Basically, it avoids expanding the scope of the mapping to be learnt and by focusing it 
on the limited dataset, it gives better accuracy on that particular task. It's about doing 
only what is required and not compromising on the performance by trying to 
incorporate generalisations. Hence, the key difference between inductive and 
transductive learning is that induction refers to learning a general function that can be 
applied to any novel inputs, while transduction is more concerned with transferring 
some observed property onto a specific set of test inputs from the training data.  
 
One of the main motivations behind our proposed model that uses graph attention 
networks for multi-label node classification is to deYelop an ³inductiYe´ semi-
supervised technique that is not limited to the samples from the training data and 
is suitable for tasks like transfer learning on graphs when training data is hard to 
achieve and large scale inductive learning in tasks where there are missing node 
feature information and missing labels.  
 

1.3 Graph fundamentals and traditional approaches 
In this section, we formally introduce graphs and define graph-structured datasets. We 
then briefly explain the major approaches that use a graph embedding for deep 
learning. We then study the pitfalls of most of these techniques and explain how graph 
neural networks came into existence.  

Graph theory defines a graph G as a set of V vertices (nodes) and E edges connecting 
the vertices in the graph. The nodes represent information holding entity objects in the 
graph while the edges represent relationships between the entities. The edges can be 
directed or undirected; weighted and non-weighted depending on the application case 
in point. Nodes and their relationships together represent the data by forming some 
expert knowledge or intuition about the problem. Nodes in graphs can be atoms in a 
molecule, users in a social network, cities in a transportation system, neurons in the 
brain, interacting objects in a dynamic physical system, points of the body used to 
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model 3D manifolds or segmentation masks in images. All these applications involve 
training models on graph-structured data.  

Prior to the advent of graph neural networks, several techniques were used to extend 
ML and DL models designed for Euclidean data to work on graphical data. Graph 
embedding is one of the key approaches that has been used in the past to transform 
nodes, edges, and their features into a Euclidean dimensional vector space. 
Fundamentally, it employs a class of graph pre-processing techniques with the sole 
aim to turn a graph into a computationally digestible format for the ML model whilst 
maximally preserving properties like graph structure and information in the 
transformed data. Embeddings can be performed at different granularity levels - node 
level, sub-graph level, or through strategies like graph walks. A few models worth 
mentioning are: 

 

Deepwalk  

Deepwalk [6] learns latent representations of vertices in a network by encoding graph 
information in the form of truncated random walks. These representations can easily 
be used in statistical ML models. The random walks are inspired from sequences of 
words (sentences) in language modelling. The steps of a random walk (a random graph 
traversal) are aggregated as instances in a matrix which can be input into a recurrent 
neural network. It is a transductive learning strategy that uses the skip-gram model to 
make predictions.  

 

Node2Vec 

Node2vec [27] was one of the first Deep Learning attempts to learn from graph-
structured data. It works on the principle that If  each node in a graph is transformed 
into an embedding like words in a sentence, a neural network can learn representations 
for each node. It features a walk bias variable α, which is parameterised by p and q. 
The parameter p prioritizes a breadth-first-search (BFS) algorithm, while the parameter 
q supports a depth-first-search (DFS) algorithm. The former is ideal for learning local 
neighbours, while the latter is better at learning global variables. Node2vec can switch 
to and from the two priorities depending on the task.  

 

Graph2Vec 

Graph2Vec [28] is a Node2vec variant that learns data-driven distributed 
representations of arbitrary sized graphs by learning to embed a graph’s sub-graphs. 
It's an unsupervised, task-agnostic, inductive approach that can be applied to many 
tasks like graph classification and clustering. It alleviates the limitations of handcrafted 
graph kernels which were previously used for such tasks but lack generalisation 
abilities.  
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Structural Deep Network embedding (SDNE) 

The previous random walk based node embedding methods use shallow models which 
fail to capture high non-linearity in the model if the network structure is complex. 
Unlike such techniques, SDNE [29] learns using first order and second order proximity 
measures. Under first order proximity (pairwise similarity), two nodes sharing an edge 
are considered to be similar. Second order proximity is present if 2 nodes share many 
neighbouring nodes. By jointly optimizing these proximity measures in a semi-
supervised deep model (made up of multiple layers of nonlinear functions), this method 
can preserve both the local and global network structure and is robust to sparse 
networks.    

 

Large-scale Information Network Embedding (LINE) 

LINE [30] minimises the difference between the input and embedding distributions 
using KL divergence. It explicitly defines 2 functions for first order and second order 
proximity. It defines two joint probability distributions for each pair of nodes in the 
graph and minimizes the KL divergence of the distributions. It fails to work when the 
task needs an understanding of node community structure.  

 

Pitfalls of the traditional approaches 

As can be observed by the approaches explained above, to extract structural 
information from graphs, traditional approaches mostly rely on summary graph 
statistics (e.g. degrees or clustering coefficients), kernel functions, or hand designed 
features to measure local neighborhood structures. They exhibit limitations because  

1. These hand-engineered features are inflexible i.e. they cannot dynamically 
adapt during the learning process to heterogeneous graphs with different types 
and sizes  

2. Designing these features could be an expensive process and time consuming.  
3. They are transductive in nature mostly and can’t be generalised to other 

applications domains where the graph is slightly different in nature. Also, 
addressing a different problem statement will be a problem (e.g. a model 
designed for node classification may not work for graph classification) 

4. Many random walks approaches use shallow models that can’t scale well to 
more complicated and large-scale graphs like the protein-protein interaction 
network dataset (PPI) 

These shortcomings proposed the requirement of the highly-efficient representation 
learning methods on non-Euclidean data.  
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1.4 Graph Neural Network 

Representation learning is a set of methods that allows a machine to be fed with raw 
input data and the model automatically discovers the representations needed for 
detection or classification on the data. Deep learning methods are typical examples of 
representation learning methods with multiple levels of representation, in the form of 
neural network layers  that each transform the representation at one level into a 
representation at a higher, slightly more abstract level using simple but non-linear 
functions. It is to be noted that deep learning layers are not designed by human 
engineers, they are learned by the model from data using a general-purpose learning 
procedure that optimises a given objective function. If such models can be 
implemented for non-Euclidean data, it will resolve each one of the limitations pointed 
above. 

While traditional deep learning research has focused on dealing with 1D, 2D, or 3D 
Euclidean-structured data such as acoustic signals, images, or videos, a large number 
of learning tasks require dealing with Modelling physics systems, learning molecular 
fingerprints, predicting protein interface, and classifying diseases which are in the form 
of graph data containing rich relation information among elements.  Extending neural 
network models to be able to efficiently and effectively learn on this kind of data 
is a very important direction for cutting edge deep learning research, but one that 
has received comparatively rather low levels of attention until very recently. This 
is the subject of our thesis wherein we explore a particular problem statement 
that is best solved by leveraging existing deep learning techniques using graph 
neural networks and demonstrate the significant advantages of using geometric 
learning for non-Euclidean spaces and its impact in artificial intelligence 
research. 

Geometric deep learning is a term for the unique and state-of-the-art emerging 
techniques attempting to generalize deep neural network models to non-Euclidean 
domains such as graphs and manifolds. Graph neural networks (GNNs)   models  
capture the dependence of graphs via message passing between the nodes of graphs. 
Unlike standard neural networks, GNNs retain a state that can represent information 
from its neighbourhood with arbitrary depth.  
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CHAPTER 2 

LITERATURE REVIEW  

2.1 Related Works 
In this section, we first describe important previous work that has led to the discovery 
and evolution of this field of geometric deep learning. The key graph neural networks 
have been listed along with the most relevant frameworks that address the issue of 
multi-label classification on graph-structured data using neural networks. 

One of the first models to learn relational information between nodes of a network was 
DeepWalk [6]. DeepWalk uses random walks in the network (like structured 
sentences) to learn the relational structure of the dataset. Although DeepWalk gives 
good results for multi-label classification (MLC) on social networks, it is outperformed 
by PLANETOID [21] which is a semi supervised inductive learning technique that 
learns an embedding jointly trained for classification and graph context prediction. Due 
to the limitations of these methods, efforts were made towards GNNs.  

2.1.1 Graph Neural Networks   

The first neural network capable of directly processing graphs was Gori et al [8] which 
defined a graph neural network (GNN) as an extension of recursive neural networks. 
GNNs can be broadly classified into spectral based and non-spectral based approaches. 
Graph based spectral approaches are based on representing the graph in a spectral form 
defined in the Fourier domain. Bruna et al [9] used a CNN in a spectral representation 
which reduced the number of parameters resulting in faster forward propagation. It's 
shortcoming of large computational requirements because of Laplacian calculations is 
reduced by Defferrard et al [10] through Fast localized Spectral Filtering.  

Further reductions in the computational requirements were made with the help of a 
model introduced by Kipf and Welling [1] called Graph Convolutional Network 
(GCN). In this model first order approximation of spectral representation of the graph 
is used. Non-spectral approaches enabled input of the architecture to be of arbitrary 
shape and size. This was introduced in Duvenaud [11] by using an individual weight 
matrix for each node degree. While [11] only allowed using a squared matrix for 
parameters, Atwood and Towsley [12] removed this limitation by introducing the 
diffusion-convolution operation for graphs. After this MoNet [13] was introduced, 
which generalized all the previous graph convolution techniques.  
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Figure 2.1 A two-layer Graph Convolutional Network. The pink dots denote the node for which 

neighbourhood aggregation is taking place. 

GraphSAGE [14] was introduced as an inductive framework, which works on unseen 
data by performing sampling and aggregation operations like mean, LSTM, and 
pooling. To overcome the limitations of earlier spectral based approaches, Graph 
Attention Networks [3] introduced a multi-headed self-attention based neighborhood 
aggregation scheme which proved well suited for both transductive and inductive 
tasks. 

The central operation in GNNs is the neural message aggregation and passing used in 
forward propagation to capture structural information efficiently. Most GNNs differ in 
the type of aggregation scheme used. Graph convolutional networks are broadly 
classified as spectral and spatial networks. Another important category is graph 
attention networks that use attention mechanisms in the neighbourhood aggregation 
step. Graph Spatial-Temporal Networks are used in time series prediction problems 
like STGCN [26] has been used for accurate traffic forecasts. Graph Auto-encoders 
combine the encoder-decoder pairs using graph representations on both sides. Graph 
generation can be central to many domains and Graph Generative Networks aim to 
generate all plausible structures from given data. 

2.2.2 Multi-Label Classification on Graphs    

The papers [16] and [17] showed that in multi-label relational datasets, label sets of 
related nodes and labels themselves are not independent. In [16], they capture single 
label and cross label dependencies among related instances and capture inter-instance 
and intra-instance label-label dependencies to enhance performance for multi-label 
collective classification. Akujuobi et al [15] is a reinforcement learning based multi-
label classification model for attributed graphs that uses simultaneous collaborative 
graph walks by multiple label specific agents. Although training multiple binary 
classifiers for each label is a straightforward approach, it is not preferred because the 
complexity increases as the number of labels increases and has scalability issues.  
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The paper [20] models multi-label classification on a Siamese GCN network with 
the two branches of the network addressing inter-label and node-label interaction. The 
way it incorporates node-label and label-label interaction into the learning process is 
significantly different from [2] and the model we propose here. Another multi-label 
classification model for graph datasets is MAGNET [19]. This model is used for text 
classification and uses the dot product of GAT and biLSTM outputs to predict labels. 
One major differences between our model and MAGNET is that MAGNET is suitable 
for only text classification whereas our model covers a wider application domain.  

2.2 Key Application Areas  

2.2.1 Geometric Deep Learning On Graphs 
 
Geometric deep learning encompasses learning on graphs and networks as well as 3D 
modelling and learning on manifolds. A few application areas include mining relation 
information in graphs like a railways network in a large metropolitan city; community 
prediction problems like Zachary’s Karate Club; researchers have applied GCNs 
combined with reinforcement learning to the classic combinatorial optimisation 
problems like travelling salesman problem and predicting unknown molecular 
structures of complex organic molecules in chemistry.  

In 3D modelling, GNNs can process kernels over the 3D point cloud. Performance on 
common image tasks can be significantly improved if the same problem is shifted to 
3D instead of 2D images as images restrict the data to a single perspective angle. Many 
applications will perform better because their inherent structure requires a 3D model 
rather than a 2D projection. Following are a few examples to showcase the power of 
GNNs: 

Interaction networks in physical systems  

Daily phenomenon and processes in the real world can be modelled as entities and their 
interactions in a graph to aid reasoning and build predictive models on them. Object 
interaction in a complex physical system can be reasoned using Interaction networks. 
It can make inferences and predictions about complex system properties in domains 
such as collision dynamics. The system simulation is performed using relation and 
object centric reasonings by using deep neural networks on graphs. GNNs have been 
shown to predict the accurate trajectories of objects in the physical system thousands 
of time steps into the future. 

Few shot learning on images   

A standard deep learning problem, image classification assigns labels to images 
containing objects belonging to a given number of classes. Mostly, it has been 
performed using convolutional neural networks (CNNs) and CNNs have achieved 
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state-of-the-art performance accuracy in a wide range of image classification tasks. 
However, zero shot learning and few shot learning are still evolving techniques 
wherein, the goal is to construct a classification model that can be used to predict labels 
that it has not seen previously (in case of ZSL) or seen very few (single shot and few 
shot learning) instances during training. We can model this task using GNNs where 
Knowledge graphs can provide the necessary information to guide the ZSL task. These 
graphs may be based on inter-image or inter-object similarities or incorporate semantic 
information of the category labels or captions of  images. Graph neural networks can 
then be applied to structured data to aid a few shot learning image classification or 
object detection tasks.  

Predicting side effects due to drug interaction  

Decagon's graph convolutional neural network model [25] is a multi-relational link 
prediction approach for multimodal networks with a large number of edge types. 
Polypharmacy is prescribing a combination of multiple drugs to the same person to 
cure multiple problems. In this study conducted by researchers at Stanford University, 
Decagon architecture has been used to model pharmacology side effects 
computationally. Today, several people are hospitalised and succumb to negative side 
effects of combination drugs prescribed to them. Given the proliferation of 
pharmaceuticals, it is not possible to practically test each combination of drugs for 
interaction side effects.  

 

Figure 2.2 An illustration of sample graph of polypharmacy side effects derived from patient 
population data. In the graph, we can observe protein-protein interaction, drug-protein interaction and 

drug-drug interactions that encode 964 side effects (target labels). [24] 
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In practice, doctors rely on prior medical history of patients and prescribe medicine 
based on their knowledge of existing side effects. Polypharmacy side effects emerge 
as a result of drug-drug interactions, wherein activity of one drug may change, often 
unfavourably, if taken with another drug. Discovering polypharmacy side effects is a 

challenging problem which has been tackled by this research which constructs a 
multimodal graph of protein-protein interactions and drug-protein target interactions, 

and uses a GCN variant to predict any possible side effects. 

Citation networks  

Citation network can be of two forms. In the first form, research articles and their inter-
paper citation can be modelled as a citation graph where the citation information can 
be used to improve the task of classifying the papers into research domain categories 
like 'computer vision' and 'deep learning'. The other form can be of an authorship 
network where authors from nodes in the graph and edges capture co-authorship 
information between the authors. These can be used to predict which subject areas the 
authors are publishing/researching in and authors closer to each other in the graph are 
more likely to be working on similar and related areas. 

 

Figure 2.3  An example of a co-citation network for social network analysis, courtesy 
[https://eduinf.eu/2012/03/15/co-citation-analysis-of-the-topic-social-network-analysis/] 

  

2.2.2 Multi-label node classification applications   
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In multi-label node classification, we can assign multiple labels to each instance. This 
is different from single label node classification where each instance can belong to a 
single class from the possible classes. To highlight the feasibility and advantages of 
using GNNs for multi-label node classification, we consider a few case studies where 
graph neural networks have showed promise for multi-label classification tasks:   

Protein protein interaction networks 

Protein protein interaction networks are commonly used to study amino acid 
interactions and GNNs can solve several problem statements on this dataset. As an 
example, the paper Protein Interface Prediction using Graph Convolutional Networks 
[24] tackles the challenging problem of prediction of interfaces between proteins. This 
problem has key applications in drug discovery and design and the authors have 
analysed using several graph convolutional operators on the dataset to get results that 
are better than the state-of-the-art SVM used previously.  

Semi-supervised Multi-label image classification [23]  

In problems like video annotation, a video clip can be annotated with multiple labels 
at the same time, such as ‘person’, ‘people march’, ‘pedestrians’. This paper proposes 
graph based learning architecture that simultaneously explores the correlations among 
multiple labels and the label consistency over the graph to perform multi-label image 
classification and video annotation. Their model exceeds all previous performance 
benchmarks over the TRECVID 2006 corpus.   

 

3D Facial Expression Recognition [22] 

In facial expression classification, a person may express happiness and relaxation at 
the same time. Hence, it is a multi-label classification problem. Automatic facial 
behaviour analysis, including facial expression of emotion and facial action unit (AU) 
recognition can be regarded as pivotal to next-generation computing systems as it plays 
a key role in proactive user interfaces, learner-adaptive tutoring systems, personal well-
being technologies, etc.  



15 
 

 

Figure 2.4 3-D facial expressions of a participant in the 4DFAB dataset [22] 

 

The majority of prior work conducted in this area involves 2D images, despite the 
limitations due to illumination variations and inherent pose. In order to deal with such 
problems, 3D faces containing much more information than a flat image are 
increasingly used in expression analysis. With regard to 3D facial expression 
recognition, [22] proposes a deep residual B-Spline graph convolution network, which 
allows for end-to-end training and inference without using hand-crafted feature 
descriptors and significantly improves on image based approaches on the high-
resolution 3D face dataset 4DFAB. This is an example of how geometric deep learning 
on 3D manifolds is revolutionising interactive AI and augmented reality today.  
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CHAPTER 3 

PROPOSED WORK 

3.1 Present models 

 
This section describes the existing GNN frameworks which form the baselines of our 
proposed model 

3.1.1 Graph attention network  
 

In this section, we describe the building blocks of this neural graph processing 
framework that is a well-established network in the field of graph neural networks. At 
the core of the architecture is the graph attentional layer which uses an attention-based 
neighbourhood aggregation mechanism unlike spectral based approaches like GCN. 

Graph Attention Network(Fig 3.1), comprising neural network architecture that 
operates on graph-structure data (geometric deep learning). Graph attention networks 
use the concept of  masked self-attentional layers to take advantage of data inherent 
with relationships, connections and shared properties. 

 

 
Figure 3.1 Structure of Graph Attention Network 

 
Attention function mainly gives importance to the input states in which it has more 
contextual relations. Further in attention the contextual vector is built in such a way 
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that it gives a global level of information of all the inputs i.e., relations are preserved 
and used for calculation at a global level. Attention mechanisms allow  dealing with 
variable sized inputs, focusing on the most relevant parts of the input to make 
decisions. Attention mechanism used to compute a representation of a single sequence, 
it is commonly referred to as intra-attention or self-attention.   
 
The attention architecture has the following interesting properties:- 

1. The parallelizability of the operation across the nodes it efficient . 
2. Arbitrary weights to the neighbours can also be specified so as to handle nodes 

with different degrees. 
3. The model can handle inductive learning tasks easily. 

 
Graph attention layer 
 

The input to this layer is , ,where defines the total 
number of features available for each node and  represents the total number of nodes 
the layer gives as output a new node feature representation in the form of  

. 
 
After applying a shared linear transformation parameterised by a weight matrix, 

, applied to each node, self-attention is  performed on the nodes using  
shared attentional mechanism  which computes attention coefficients 
: 
 

                                                     (3.1) 
For graphs with weighted edges, calculation of attention coefficients involves use of 

weights of the edges   as follows : 

                                                    (3.2) 
Here , a is the alignment function ( a feed forward jointly trained with the model) and  
e  is the alignment score in this case attention coefficient which indicates the 
importance of node j’s features to node i. Graph structure in injected into the 
mechanism by performing masked attention i.e.,  for nodes , where    is  
neighborhood (first order neighbours) of node i in the graph. 
 
 
Attention coefficients are then normalized to make them easily comparable : 
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                                        (3.3) 
 

In graph attention networks the attention mechanism is a single layer feedforward 
neural network  parametrized by weight vector, and LeakyRelu nonlinearity is also 
applied. 
 

                            (3.4) 
 

                              (3.5) 
 

The complete attention mechanism producing normalised attention coefficients is 
given by  (3.4) for graphs with unweighted edges and (3.5) for graphs with weighted 
edges. 

The obtained normalized attention coefficients are used to compute linear 
combinations of the features corresponding to the attention coefficients, this is used as 
the final output features for every node: 

                                                    (3.6) 
 
 
Regularisation 
  
Multi-head self-attention is used in the Graph attention network  to provide the model 
to capture various aspects of the graph structured data and improve its expressive 
ability. Essentially , the multi head attention is a combination of several self-attention 
layers stacked in parallel, with linear transformations of the same input. 
 
Independent attention mechanisms execute the transformation(3.7), and then their 
respective features are concatenated: 
 

                                           (3.7) 

Here || represents concatenation and    represent normalized attention coefficients. 
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While employing multi-head attention on the final layer of the network, averaging is 
employed instead of concatenation. 

3.1.2 Multi-label Graph Convolution network 
 
In this section, multi-label graph convolution network is described, the basic 
architecture of ML-GCN is used as inspiration for our project. Multi label graph 
convolution network uses graph convolution network to first embed graph topological 
information and node features.  
 
Although GCN produces respectable embedding results, it simply reduces cross 
entropy loss between the last layer output and actual label representation, GCN alone 
is not capable of learning embedding suitable for multi label classification. Hence ML-
GCN model focuses on developing on basic GCN architecture so as to enable multi-
label classification. 
 
ML-GCN focuses on two aspects, one of which is present in the form of dependencies 
between node instances and their respective labels because certain types of node 
features characterize particular subsets of labels. Henceforth, this dependency will be 
referred to as node-label correlation. The other type of dependency exists between 
nodes whose labels frequently occur together in the dataset. For example, in a 
collaboration network if the research area tags ‘Domain adaptation’ and ‘Computer 
vision’ frequently occur together, then it is likely that the authors publishing in these 
areas are closely situated in the lower dimensional feature space. Hence, capturing such 
label-label correlations can help us get richer feature representations from the model 
which are well suited for MLC. 
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Figure 3.2 Network architecture for Multi-Label Graph Convolutional Network (ML-GCN) 

 
Architecture of ML-GCN is shown in figure 3.2.ML-GCN achieves this by generating 
a uniform label-node co-embedding in a lower dimensional space using which the 
node-label and label-label correlation losses can be easily computed for use in model 
optimisation. This is done by introducing a label embedding matrix. The label 
embedding matrix is represented as , where  represents the number of 
labels. 
 
This randomly generated label embedding matrix is used to calculate the label-node 
loss and the first embedding matrix generated from GCN along with the label 
embedding matrix is used to calculate the label-node loss. To maximize the probability 
of occurrence of labels for their respective nodes Skip-gram model is used. Skip-gram 
model is used to find context words using a target word. Skip-gram model on graph 
could be done by considering node of the graph as target word and labels of the node 
as context words for that node, hence forming a sentence of the node and its labels. 
Sentences formed using nodes along with labels are used to minimize label-node loss 
whereas sentences formed using label pairs are used to minimize label-label loss.  
 

Let , represent the label vector for node  and  represent the 
feature vector output of second last layer of GCN for node . Also, label vector of  

is represented as  . We use node-label pairs ,  , for 
optimization of node label embedding by maximizing the following equation : 
 

                                         (3.8) 
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To optimize label-label correlation label-label pairs ,

, are used by maximizing the following equation: 

                                 (3.9) 
 

For node-label loss, all possible pairs of a node and its labels are constructed just like 
word pairs in the skip-gram model and a co-occurrence probability is calculated. 
Similarly, intra-label pairs are made for computing label-label loss co-occurrence 
probability. The summation over all the node-label and label-label pairs is a costly step 
and the time complexity would increase with the number of labels. To alleviate this, a 
negative sampling technique is used. This negative sampling is used to calculate 

 and  which needs to be calculated over all the nodes , negative 
sampling reduces the running time. This results in calculation of label-label and label-
node loss. Which are further used to optimize the model for MLC.  

3.2 Proposed Framework 
Our proposed Multi-Label Graph Attention Network (ML-GAT) model is 

constructed by using the concepts of the ML-GCN architecture [2] on the Graph 
Attention Network baseline to elevate it for use in a multi-label node classification 
problem. We reiterate that MLC is a complex process where many kinds of 
relationships need to be learnt from the graph in order to learn a truly representative 
and robust model. These relationships include label-label and node-label correlations. 
This node-label and label-label correlation information is not explicitly available in the 
graph structure and hence cannot be captured by the basic GAT model.  

3.2.1 Intuition 

Intuitively, this model should perform well on the graphical multilabel node 
classification problem because of the ability of GAT to perform inductive learning 
tasks. In order to make our model flexible to unseen nodes (or unseen graphs 
altogether) and have wider application, we want an inductive semi-supervised graph 
neural network based multi-label classification technique. This is where the idea of 
adapting the ML-GCN model for a GAT baseline stemmed from as the GAT is 
inherently structured for inductive learning tasks via the use of self-attention 
mechanisms. This observation is supported by its inductive learning experiments on 
PPI dataset for which it achieves high performance on two completely unseen test 
graphs.. 
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3.2.2 Training  

The input to our architecture is a set of node features  and a 
graph adjacency matrix that captures edge information(citations). Like in the existing 
GAT framework, the input is passed through a multi-head attention layer (8 multi-head 
units) called a graph attention layer. The layer output is a concatenation matrix of node 

features  formed after performing the self-attentional 
neighbourhood aggregation mechanism.  

Taking inspiration from ML-GCN , our model focuses on generating uniform label-
node co-embedding for optimization of label-label and node-label loss . 

 
Figure 3.3 Network architecture for Multi-Label Graph Attention Network (ML-GAT) 

The ML-GAT framework is presented in Figure 3.3. In the first layer of ML-GAT 
model, we use 8 attentional heads and concatenate the output from the heads (as used 
for Cora dataset in [3]) to get an output node feature embedding in the form of a  
tensor. In the second and final layer, we employ a single attention head followed by a 
logistic sigmoid activation. This output feature representation is used to compute the 
classification loss for training.  

For node-label loss, all possible pairs of a node and its labels are constructed just like 
word pairs in the skip-gram model and a co-occurrence probability is calculated. 
Similarly, intra-label pairs are made for computing label-label loss co-occurrence 

probability. To decrease the summation requirement for calculating  and 

 over all the labels, negative sampling technique with a sample size of 5 has 
been used. The node-label and label-label losses hence attained are given in 3.10 and 
3.11 . Label-label, label-node and total loss are represented by ,  and  
respectively. 
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                (3.10) 

                (3.11) 

                             (3.12) 

The final objective to be optimized is given in 3.12 . ,  are the 
regularization hyperparameters to penalize the loss terms differently as per the 
optimization strategy used. 

It is to be noted that as our models need to learn MLC and each training instance can 
belong to one or more labels i.e.  belongs to {0,1}, we use a logistic sigmoid function 
instead of a softmax function on the output tensor. This is in accordance with prior 
methods used for MLC as is the case with GAT for inductive learning on PPI dataset 
[2]. For fair comparison with ML-GCN and ML-GAT and alignment with the datasets, 
the baseline GAT and GCN models we experiment with and report in this paper also 
use the same classification loss.  

Making a separate label embedding matrix helps in getting label and node feature 
information together in a uniform space and makes computation of the loss terms easy. 
A label embedding matrix is generated to represent label embeddings in the same 
vector space as the node feature embedding. The dimensionality of this space should 
be large enough to capture all the information and prevent any loss of feature 
information due to a sudden shift from high dimensional input feature matrix to a very 
low dimensional network output feature matrix in models with few layers. At the same 
time, it shouldn’t make the process computationally expensive. As input node vectors 
are of high dimensionality and the output embedding of the GAT has a low 
dimensionality, it was advised in [2] that the label embedding matrix have dimensions 
same as the node features before the last graph attentional layer (output of the 2nd last 
GAT layer).  

3.2.3 Loss computation and back propagation 

Cross entropy loss is computed between the output of the GAT network and train set 
labels. Node-label loss and label-label loss are calculated using a randomly generated 
label embedding matrix and output of the second last GAT layer. and are used as 
regularisation parameters for node-label loss and label-label loss respectively. 
Summation of cross entropy loss and regularized node-label and label-label loss gives 
loss sum, which is used for backpropagation. L2 regularization and dropout to both 
layers’ inputs during training. 
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3.2.4  Testing phase 

Our project uses micro F1 score for test accuracy measurement. Micro F1 score is the 
standard accuracy measurement used in most of the multi-label classification models. 
Micro F1 score is based on performing aggregation of all  the classes to compute 
average metrics hence micro F1 score is more suitable for multi label classification. 
Standard MLC models like ML-GCN and MAGNET use micro F1 score as an 
accuracy metric. 
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CHAPTER 4 
 

EXPERIMENTAL RESULTS 
In this section, we report an empirical evaluation of our model ML-GAT against 

three strong previous approaches on multi-label graph-structured datasets. The results 
attained in our experiments surpass existing benchmarks across all three state-of-the-
art models in consideration. In the following section, we summarize our experimental 
setup, results and present a brief quantitative analysis of the relative performance of 
ML-GCN and ML-GAT models with variation of three GNN hyperparameters.  

4.1 Dataset  
For the purpose of this research, we use multi-label graph-structured datasets Yeast 
and Facebook. These two datasets have been selected because of the considerable 
difference in their application domain, topological structure as well as data sizes. 
Facebook is a social network dataset consisting of nodes representing the Facebook 
user and the edges between the nodes represents friendship relations between the 
nodes. The goal is to identify the ‘social circles’ each user belongs to. In the Yeast 
dataset nodes represent genes in the form of micro-array expression data and edges 
indicate gene interactions, the graph represents protein interaction in the yeast 
organism. The task is to predict the cellular localization sites of proteins based on genes 
and their interactions. Summarization of the characteristics of the datasets used in the 
experiments is presented in Table 4.1. 

Datasets Nodes Edges Features Classes 

Facebook 710 56824 480 46 

Yeast 1240 4466 831 13 

Table 4.1 Summary of the characteristics of the datasets 

4.2 Baseline   
 
We apply a two-layer GAT model like in the original paper ("Graph attention 
networks", Veličković, Petar, et al.). Further, we also reproduce results on facebook 
and yeast using GCN and ML-GCN.  Dropout with p = 0.5 is applied to both layers’ 
inputs as well as to the normalized attention coefficients for all the models. We train 
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the models for 200 epochs and training size of 0.14 percent of the original dataset size. 
Reproduced baseline results are shown in table 4.2 . 
 

 

Models Facebook Yeast 

GCN 60 64.94 

GAT 68.65 53.179 

ML-GCN 71.64 64.78 

Table 4.2 F1-score (test accuracy) of GCN, GAT and ML-GCN 

   
 

4.3 Methods in Comparison 
 
We perform experiments on the proposed ML-GAT model. Graph Convolutional 
Networks (GCN) and Graph Attention Networks(GAT) are well established graph 
neural network frameworks. The model ML-GCN was introduced in the paper [2]. 
During the course of experimentation over this model, we discovered hyperparameter 
combinations which could further optimize the original ML-GCN model. Hence, 
besides first reproducing the ML-GCN experiments as presented by the authors,  we 
performed hyperparameter optimization and found directions that led to significant 
performance enhancement. The four graph neural networks in comparison are: 
 

1. Graph Convolutional Network[1], that directly uses both node and graph 
topological information to perform semi-supervised learning on graph-
structured data.  

2. Graph Attention Network[3], a neural network architecture that employs self-
attentional layers to operate on graph-structured data. It improves on the GCN 
models. 

3. ML-GCN[2], a GCN based semi-supervised learning model tackling multi-
label classification adapted for our experiments. 

4. ML-GAT, an approach to augment GAT further for multi-label classification.  
 

4.4 Experimental Settings 

 
For fair comparison with previous literature, we use a two-layer network for all four 
models. We set the random seed to 42 and randomly shuffle the dataset before making 
the train, test and validation data splits. We use a fixed validation set for 
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hyperparameter optimization. We chose the same test and validation dataset splits as 
in [2] with a train split of 20% and 30% for Facebook and yeast datasets respectively. 
Unless otherwise specified, we train the ML-GCN and ML-GAT models on Facebook 
using a middle layer dimensionality of 64 with 150 test, 100 validation and 142 train 
nodes. For yeast, we use a 128 unit middle layer and 500 test, 300 validation and 372 
training nodes. 

We optimize hyperparameters on both datasets individually and train all models for a 
maximum of 350 epochs using Adam SGD optimizer [5]. Glorot weight initialization 
as per [4] has been used with a weight decay of 5e-4. For our experiments, we use a 
learning rate of 0.01 and 0.005 throughout for Facebook and yeast respectively. Other 
than the additional experiments over dropout, we use a dropout of 0.2 for both datasets. 
Number of negative samples are set to 5 and to 0.25 as in paper [2]. During the course 
of experimentation over this model, we discovered hyperparameter combinations 
which could further optimize the original ML-GCN model. Hence, we performed 
hyperparameter optimization and found directions that led to significant performance 
enhancement. To make a fair comparison of ML-GCN and ML-GAT with their 
baselines GCN and GAT, unless otherwise stated, all reported results are from 
experiments performed using our optimized hyperparameters. Micro-F1 score (in 
percentage) which is a standard for MLC has been used as the evaluation metric for all 
experiments. 

4.5 Overall Results 
We perform experiments on the proposed ML-GAT model. Graph Convolutional 

Networks(GCN) and Graph Attention Networks(GAT) are well established graph 
neural network frameworks. We use these as baselines for comparison with the other 
two models. Results for the baselines GCN and GAT are produced by our learning 
strategy on these datasets 

Our overall performance results are summarized in Table 4.3. In the table, the metrics 
for GCN*[2] and MLGCN*[2] have been reused from the ML-GCN paper Table 2 [2] 
to draw comparison. It is to be noted that we observe an increase of 12.63% and 10.09 
% from the GCN* F1 values on Facebook and yeast respectively. In our experiments, 
MLGCN achieves an improvement of 1.53% over GCN for Facebook and 0.75 % for 
yeast. MLGAT outperforms the GAT by 4.68% and 0.5% on Facebook and yeast 
respectively. We also point out that MLGAT outperforms MLGCN for Facebook by a 
margin of 2.57%. The opposite is true for Yeast where MLGCN exceeds MLGAT 
performance by 1.94%. 

 

 

 



28 
 

 

Models Facebook Yeast 

GCN*[2] 58.13 63.16 

GCN 70.76 73.25 

GAT 70.18 71.56 

ML-GCN*[2] 59.85 66.06 

MLGCN 72.29 74.0 

MLGAT 74.86 72.06 

Table 4.3 Summary of results in terms of micro-F1 score (in percentage) for Facebook and Yeast 
datasets 

4.6 Comparative Study 

4.6.1 Study based on dropout 

     Dropout Facebook Yeast 

ML-GAT ML-GCN ML-GAT ML-GCN 

0.1 74.93 74.85 71.63 74.18 
0.2 76.35 74.27 71.23 73.98 
0.3 75.08 73.04 69.24 74.1 
0.4 74.16 73.9 68.54 73 
0.5 74.1 74.49 61.54 72.5 
0.6 73.88 74.64 54.72 71.61 

Table 4.4  F1 score obtained for various dropouts on Facebook and Yeast using ML-GAT and ML-
GCN models 
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The effect of variation of layer dropout is presented in figure 4.1, and table 4.4 contains 
the F1 score obtained for various dropouts on Facebook and Yeast using ML-GAT and 
ML-GCN models. The same dropout is applied on both the layers of the 2 models. We 
observe sharp changes in performance as the value of dropout is increased from 0.1 to 
0.6 for both models and datasets. Paper [2] used a dropout of 0.6 for these datasets. 
During the course of our experiments, we realized that using a lower dropout value 
such as 0.2 plays a key role in the performance increase and we use this value for all 
our experiments. 

 
Figure 4.1 Influence of layer dropout variation on test set classification performance. We show the 

results of our experiments on both the standard ML-GCN model and proposed ML-GAT model. 

4.6.2 Study based on  and  
 

    Lambda       
( ) 

Facebook Yeast 

ML-GAT ML-GCN ML-GAT ML-GCN 

0.01,10 70.69 69.62 70 72.22 
0.1,1.0 73.14 71.23 70.72 74.15 
0.25,0.5 76.62 74.12 71.29 74.17 
0.5,0.25 77.31 73.37 72.93 74.51 
1.0,0.1 77.53 75.22 72.15 74.42 
10,0.01 78.09 76.4 73.46 74.62 

Table 4.5 F1 score obtained for various lambda1 and lambda2 pairs on Facebook and Yeast using 
ML-GAT and ML-GCN models 

Table 4.5 contains the F1 score obtained for various lambda1 and lambda2 pairs on 
Facebook and Yeast using ML-GAT and ML-GCN models, and in figure 4.2, we 
investigate the combined influence of varying the regularisation hyperparameters  and  
(penalties associated with label-node and label-label losses) on overall model 
performance.  and  were varied together in such a manner that  increased as  decreased 
to observe the relative significance of one with respect to the other. It is to be noted 
that the maximum accuracy attained for both datasets and models in all our 
experiments is for the combination of 𝜆ଵ=10.0 and 𝜆ଶ=0.01. These values are 73.46% 
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for ML-GAT and 74.64% for ML-GCN on yeast and 78.09% for ML-GAT and 76.4% 
for ML-GCN on Facebook dataset. 

 
Figure 4.2 These graphs show classification performance over variation of regularization 

hyperparameters:  and  for both MLGCN and MLGAT.  is the parameter associated with label-node 
loss and  is associated with the label-label lose 

 

In (3.12),  and are used to weight the regularization loss terms   and   respectively. They 
control the amount of attention that the learning process should pay to the penalty or 
how much to penalize the model based on the values of the loss terms. If the penalty is 
too high, the model will underestimate the respective loss term while, if the penalty is 
too low, the model will lay higher emphasis and overestimate the concern addressed 
by the respective loss term. The values of 1and 2 corresponding to the best performing 
model show that  >> and the model performs best when trained with higher penalty on 
label-node loss and very low penalty on label-label loss. This in effect proves the 
hypothesis that the GCN and GAT models inherently fail to capture label-label 
correlations because they treat each label individually and such inter-label correlations 
when added and emphasized, as in ML-GCN and ML-GAT for MLC result in 
significant increase in the Micro F1 measure. This hypothesis has previously been 
implied in the paper [2] (MLGCN) through the comparison over experiments on 
models Partly ML-GCN and ML-GCN which shows that the calculation of label-label 
loss in training improves the performance of the model as compared to the exclusion 
of the same from the objective function. 
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4.6.3 Study based on training size 

 
    Training 

size 
Facebook Yeast 

ML-GAT ML-GCN ML-GAT ML-GCN 
10% 73.2 67.49 69.46 71.16 
20% 76.35 74.27 70.4 73.33 
30% 74.78 72.16 71.23 73.43 
40% 75.64 71.19 71.97 74.95 
50% 75.43 72.41 72.23 73.35 

60% for 
facebook  

58% for yeast 

75.78 72.11 72.66 73.37 

Table 4.6 F1 score obtained using different training dataset size on Facebook and Yeast using ML-
GAT and ML-GCN models 

An analysis of the influence of training size on test accuracy can be seen in Figure 4.3 
and table 4.6 contains the F1 score obtained for various training dataset size on 
Facebook and Yeast using ML-GAT and ML-GCN models. In all these experiments, 
the test set is fixed at 150 nodes for Facebook and 500 nodes for yeast. Hence, the 
reported test set F1-scores shown on the graphs are comparable. For training sizes 
greater than 0.4, we include the validation set in the train set and train without 
validation. All other hyperparameters remain fixed . For Facebook, we observe the best 
performance with a training set size of 20% consistently for both ML-GCN and ML-
GAT and hence use it for all experiments reported in the paper. In yeast, the F1-score 
more or less increases as we increase the number of training instances. It can be 
observed that for Facebook, ML-GAT consistently outperforms ML-GCN while the 
opposite is true for Yeast. 

 
Figure 4.3 Influence of training set sizes on test set performance for both ML-GCN and ML-GAT in 

our experiments. 
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4.6.4 Study based on hidden layer 

 

The number of layers as well as the number of hidden units play an important role in 
the performance of the model. With fewer number of layers the difference between the 
second last layer dimensions and the last layer dimension could be vast, resulting in 
possible hidden feature loss. Hence the number of layer and hidden units should be 
carefully selected in accordance with the dataset size. Large numbers of layers also 
have a negative impact because they can result in excessive mixing of features leading 
to loss in difference between different label features. Because the size of datasets 
facebook and yeast are small (710 and 1240 nodes respectively) two layered ML-GAT 
architecture is considered suitable for them. Further number of hidden layers should 
also be in accordance of the dataset size, because of the smaller size of facebook dataset 
hidden layer size of 64 is suitable of facebook and since yeast has comparatively 
greater size than facebook, model performs better with hidden layer size of 128 for 
yeast. This could be seen in table 4.7 as well. 
 

Hidden Layer size Facebook Yeast 

64 74.86 71 

128 73.5 71.23 

256 72.31 66.37 

Table 4.7 F1 score obtained using different hidden layer  size on Facebook and Yeast using ML-GAT 
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 
This paper examines the relative performances of the 4 models in consideration and 
gives key insights into their behaviour with respect to multi-label node classification. 
By setting new benchmarks and providing a detailed experimental analysis over the 
factors that affect these models for a multi-label semi-supervised learning scenario, 
this paper will serve as a benchmark and starting point for future research in this area 
on these datasets as MLC for graph-structured data is till date relatively unexplored.  
We emphasise on the relevance and importance of the label-label correlation which 
seems to capture information pivotal in affecting performance for the case of multiple 
labels. This turns out to be true for both GAT and GCN baselines which show an 
increase of ~1% consistently over all experiments.  

5.2 Future Work  

 
A possible direction for future work could be performing these experiments over large-
scale inductive learning tasks like MLC on the protein-protein interaction dataset 
(PPI), which contains multiple graphs. While we cannot make inferences about the 
scalability of this approach as of now, it is worth pointing out that GAT has the 
following inherent features which should make ML-GAT better suited for large-scale 
datasets like PPI: 

1.  To reduce the storage complexity to linear in the number of nodes and edges, 
a sparse matrix version of the GAT layer could be used. This enables the 
execution of GAT models on larger graphs. 

2. The attention based neural message passing mechanism doesn’t depend on 
access to the entire graph structure upfront, making it apt for inductive learning 
datasets like PPI where nodes, edges, their features or labels may be missing at 
the time of model training. 
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