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Can a segmentation model trained on the road scenes of a particular city extend to incrementally learn novel geographical domains?

Our Novel Problem Setting
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Learn IDD Domain
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Yes = {road, car, train} YVspp ={road, car, train}
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Domain Shift

What is Multi-Domain Incremental Learning?

Domain Shift + Semantic Shift

=> |Incrementally (sequentially) learn a new domain on an existing model.

=> While RETAINING performance on the previously seen domains.

=> (Given previous domains’ data is not accessible.

-> Label spaces may be non-overlapping.

e Learn new domain, while mitigating forgetting on previous domain:

Challenging Objectives Achieved

o Towards a stability-plasticity trade-off

e DOMAIN SHIFT + SEMANTIC SHIFT (label spaces can be non-overlapping)

e Learn without storing any old samples (without replay based approaches)

Architecture Overview

Training Phase
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Inference Phase
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DAU: Domain-Aware Residual Unit
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——>» Layers used in forward pass

Domain-Specific to current domain Domain-Specific to previous domain
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How is our setting different from existing semantic segmentation settings?

Problem Setting | Sequential | Differences, Source vs target | Data (availability, supervision) Goals Solution Type
Label Space | Domain Shift Source Target Task-Aware | Multi-Head
UDA v same v v |V (unlabeled) learn new X X
Class-IL v different X X v retain old, learn new X X
MDL % different v v v retain all v v
MDIL (ours) v different v X | v | retain old. learn new v | v

- ---» Layers not used in forward pass \\‘

e Network reparameterization into domain-specific (DS) layers and

------

shared (domain-invariant) layers.

e Shared layers capture homogeneous semantic features common

among domains.

Results And Analysis

Input Image Fine-Tuning Ours Ground Truth

CS (Step 1) — BDD (Step 2): Results on Cityscapes after incrementally learning BDD100k: Our
model mitigates forgetting by 25.16% as compared to Fine-tuning baseline

o Fine-tuned on L using differential learning rates

e Domain-specific layers capture heterogeneous dataset statistics.

o TrainedonlyonL .

Contributions and Potential Use Cases

- First real-world benchmark for domain
s incremental semantic segmentation
Continual, life-long
learning
= Extensible model that is capable of learning
@ across new domains, as and when the data
AutonOmOus iS CO”eCted
Driving

; t Studies transfer learning for cross-domain
- semantic segmentation
Semantic

Segmentation

IL Step Step 1 Step2; Da = Dp,Ya=Ys Step 2: Da = Dp,VYa £ VB
CS CS — BDD CS —I1DD
Methods CS 1 CS 1 BDD 1t N %6 | C8 7 IDD ¢ A% |
Single-task | 72.55 12.3) 54.1 1253 61.97
Multi-task 72.55 69.42 57.69 1.16% (1) 71.11 60.85 1.89%
FT 72.55 | 40.05 (-32.5) 52.74 23.66% 36.81 (-35.74) 61.56 24.96%
FE 72.55 | 72.55 (-0.00) 42.93 10.32% 72.55 (-0.00) 45.69 13.14%
Ours 71.82 | 65.21 (-7.34) | 55.73 (+1.63) 3.55% 64.58 (-7.97) | 59.11 (-2.86) | 7.80%
IL St Step3: Dg # Dp,YVa £ Y - - r T
P i ety Tk e Forgetting is mitigated significantly
Methods CS 1 BDDT [ DT [ A% e \When the label spaces are same, forward
Single-task 72.55 54.1 61.97 :
Multi-task 69.37 58.13 5937 | 0.38% transfer of knowledge achieved.
FT 30.49 (-42.06) | 32.05(-22.05 | €065 | 33.62% @ \Nhen label spaces are different, there can
FE 72.55 (-0.00) | 42.93 (-11.17) | 46.09 | 15.42% o
Ours 59.19 (-13.36) | 49.66 (4.44) | 59.16 | 10.39% be domain interference.
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(a) Fine-tuning (b) Ours

CS—BDD: A comparison of CS latent space before and after learning BDD. Our model
preserves the latent space of previous domain, which gets distorted during fine-tuning.



